Thursday 24th October 2019. At one of the largest attended meetings, Dr Sue Bowler from The Royal Astronomical society and The university of Leeds. Delivered a presentation entitled “ fifty years on the Moon after Apollo”.
She started as close to the beginning as we can get. The Moon is thought to have formed about 4.51 billion years ago, not long after Earth. The most widely accepted explanation is that the Moon formed from the debris left over after a giant impact between Earth and a Mars-sized body called Theia.

Thomas Harriot produced a series of exquisite lunar drawings, one of which is dated 26th July 1609, pre-dating Galileo’s much-celebrated observations of the moon by six months
The Moon is in synchronous rotation with Earth, and thus always shows the same side to Earth, the near side. The near side is marked by dark volcanic maria that fill the spaces between the bright ancient crustal highlands and the prominent impact craters. After the Sun, the Moon is the second-brightest regularly visible celestial object in Earth’s sky. Its surface is actually dark, although compared to the night sky it appears very bright, with a reflectance just slightly higher than that of worn asphalt. Its gravitational influence produces the ocean tides, body tides, and the slight lengthening of the day.
The Moon’s average orbital distance is 384,402 km (238,856 mi), or 1.28 light-seconds. This is about thirty times the diameter of Earth. The Moon’s apparent size in the sky is almost the same as that of the Sun, since the star is about 400 times the lunar distance and diameter. Therefore, the Moon covers the Sun nearly precisely during a total solar eclipse. This matching of apparent visual size will not continue in the far future because the Moon’s distance from Earth is gradually increasing.
Both the Moon’s natural prominence in the earthly sky and its regular cycle of phases as seen from Earth have provided cultural references and influences for human societies and cultures since time immemorial. Such cultural influences can be found in language, lunar calendar systems, art, and mythology.
One the first images she displayed was an exquisite pencil drawing made by a wealthy but publicity shy English astronomer and mapmaker, Thomas Harriot. He produced a series of exquisite lunar drawings, one of which is dated 26th July 1609, pre-dating Galileo’s much-celebrated observations of the moon by six months.
Internal structure.
The Moon is a differentiated body. It has a geochemically distinct crust, mantle, and core. The Moon has a solid iron-rich inner core with a radius possibly as small as 240 kilometres (150 mi) and a fluid outer core primarily made of liquid iron with a radius of roughly 300 kilometres (190 mi). Around the core is a partially molten boundary layer with a radius of about 500 kilometres (310 mi). This structure is thought to have developed through the fractional crystallization of a global magma ocean shortly after the Moon’s formation 4.5 billion years ago.
Crystallization of this magma ocean would have created a mafic mantle from the precipitation and sinking of the minerals olivine, clinopyroxene, and orthopyroxene; after about three-quarters of the magma ocean had crystallised, lower-density plagioclase minerals could form and float into a crust atop. The final liquids to crystallise would have been initially sandwiched between the crust and mantle, with a high abundance of incompatible and heat-producing elements.
Consistent with this perspective, geochemical mapping made from orbit suggests the crust of mostly anorthosite. The Moon rock samples of the flood lavas that erupted onto the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron-rich than that of Earth. The crust is on average about 50 kilometres (31 mi) thick.
Surface Geology.
The topography of the Moon has been measured with laser altimetry and stereo image analysis.Its most visible topographic feature is the giant far-side South Pole–Aitken basin, some 2,240 km (1,390 mi) in diameter, the largest crater on the Moon and the second-largest confirmed impact crater in the Solar System.At 13 km (8.1 mi) deep, its floor is the lowest point on the surface of the Moon.
The highest elevations of the surface are located directly to the northeast, and it has been suggested might have been thickened by the oblique formation impact of the South Pole–Aitken basin. Other large impact basins such as Imbrium, Serenitatis, Crisium, Smythii, and Orientale also possess regionally low elevations and elevated rims. The far side of the lunar surface is on average about 1.9 km (1.2 mi) higher than that of the near side.
The discovery of fault scarp cliffs by the Lunar Reconnaissance Orbiter suggest that the Moon has shrunk within the past billion years, by about 90 metres (300 ft). Similar shrinkage features exist on Mercury. A recent study of over 12000 images from the orbiter has observed that Mare Frigoris near the north pole, a vast basin assumed to be geologically dead, has been cracking and shifting. Since the Moon doesn’t have tectonic plates, its tectonic activity is slow and cracks develop as it loses heat over the years.
Volcanic features.
The dark and relatively featureless lunar plains, clearly seen with the naked eye, are called maria (Latin for “seas”; singular mare), as they were once believed to be filled with water; they are now known to be vast solidified pools of ancient basaltic lava. Although similar to terrestrial basalts, lunar basalts have more iron and no minerals altered by water. The majority of these lavas erupted or flowed into the depressions associated with impact basins.
Several geologic provinces containing shield volcanoes and volcanic domes are found within the near side “maria”. Almost all maria are on the near side of the Moon, and cover 31% of the surface of the near side compared with 2% of the far side. This is thought to be due to a concentration of heat-producing elements under the crust on the near side, seen on geochemical maps obtained by Lunar Prospector’s gamma-ray spectrometer, which would have caused the underlying mantle to heat up, partially melt, rise to the surface and erupt.
Most of the Moon’s mare basalts erupted during the Imbrian period, 3.0–3.5 billion years ago, although some radiometrically dated samples are as old as 4.2 billion years. Until recently, the youngest eruptions, dated by crater counting, appeared to have been only 1.2 billion years ago. In 2006, a study of Ina, a tiny depression in Lacus Felicitatis, found jagged, relatively dust-free features that, because of the lack of erosion by infalling debris, appeared to be only 2 million years old. Moonquakes and releases of gas also indicate some continued lunar activity. In 2014 NASA announced “widespread evidence of young lunar volcanism” at 70 irregular mare patches identified by the Lunar Reconnaissance Orbiter, some less than 50 million years old. This raises the possibility of a much warmer lunar mantle than previously believed, at least on the near side where the deep crust is substantially warmer because of the greater concentration of radioactive elements. Just prior to this, evidence has been presented for 2–10 million years younger basaltic volcanism inside Lowell crater, Orientale basin, located in the transition zone between the near and far sides of the Moon.
An initially hotter mantle and/or local enrichment of heat-producing elements in the mantle could be responsible for prolonged activities also on the far side in the Orientale basin.
The lighter-colored regions of the Moon are called terrae, or more commonly highlands, because they are higher than most maria. They have been radiometrically dated to having formed 4.4 billion years ago, and may represent plagioclase cumulates of the lunar magma ocean. In contrast to Earth, no major lunar mountains are believed to have formed as a result of tectonic events.
The concentration of maria on the Near Side likely reflects the substantially thicker crust of the highlands of the Far Side, which may have formed in a slow-velocity impact of a second moon of Earth a few tens of millions of years after their formation.
Impact craters.
The other major geologic process that has affected the Moon’s surface is impact cratering, with craters formed when asteroids and comets collide with the lunar surface. There are estimated to be roughly 300,000 craters wider than 1 km (0.6 mi) on the Moon’s near side alone. The lunar geologic timescale is based on the most prominent impact events, including Nectaris, Imbrium, and Orientale, structures characterized by multiple rings of uplifted material, between hundreds and thousands of kilometers in diameter and associated with a broad apron of ejecta deposits that form a regional stratigraphic horizon. The lack of an atmosphere, weather and recent geological processes mean that many of these craters are well-preserved. Although only a few multi-ring basins have been definitively dated, they are useful for assigning relative ages. Because impact craters accumulate at a nearly constant rate, counting the number of craters per unit area can be used to estimate the age of the surface. The radiometric ages of impact-melted rocks collected during the Apollo missions cluster between 3.8 and 4.1 billion years old: this has been used to propose a Late Heavy Bombardment of impacts.
Blanketed on top of the Moon’s crust is a highly comminuted (broken into ever smaller particles) and impact gardened surface layer called regolith, formed by impact processes. The finer regolith, the lunar soil of silicon dioxide glass, has a texture resembling snow and a scent resembling spent gunpowder. The regolith of older surfaces is generally thicker than for younger surfaces: it varies in thickness from 10–20 km (6.2–12.4 mi) in the highlands and 3–5 km (1.9–3.1 mi) in the maria. Beneath the finely comminuted regolith layer is the megaregolith, a layer of highly fractured bedrock many kilometers thick.
Comparison of high-resolution images obtained by the Lunar Reconnaissance Orbiter has shown a contemporary crater-production rate significantly higher than previously estimated. A secondary cratering process caused by distal ejecta is thought to churn the top two centimeters of regolith a hundred times more quickly than previous models suggested – on a timescale of 81,000 years.
Presence of water.
Liquid water cannot persist on the lunar surface. When exposed to solar radiation, water quickly decomposes through a process known as photodissociation and is lost to space. However, since the 1960s, scientists have hypothesized that water ice may be deposited by impacting comets or possibly produced by the reaction of oxygen-rich lunar rocks, and hydrogen from solar wind, leaving traces of water which could possibly persist in cold, permanently shadowed craters at either pole on the Moon. Computer simulations suggest that up to 14,000 km2 (5,400 sq mi) of the surface may be in permanent shadow. The presence of usable quantities of water on the Moon is an important factor in rendering lunar habitation as a cost-effective plan; the alternative of transporting water from Earth would be prohibitively expensive.
In years since, signatures of water have been found to exist on the lunar surface. In 1994, the bistatic radar experiment located on the Clementine spacecraft, indicated the existence of small, frozen pockets of water close to the surface. However, later radar observations by Arecibo, suggest these findings may rather be rocks ejected from young impact craters. In 1998, the neutron spectrometer on the Lunar Prospector spacecraft showed that high concentrations of hydrogen are present in the first meter of depth in the regolith near the polar regions. Volcanic lava beads, brought back to Earth aboard Apollo 15, showed small amounts of water in their interior.
The 2008 Chandrayaan-1 spacecraft has since confirmed the existence of surface water ice, using the on-board Moon Mineralogy Mapper. The spectrometer observed absorption lines common to hydroxyl, in reflected sunlight, providing evidence of large quantities of water ice, on the lunar surface. The spacecraft showed that concentrations may possibly be as high as 1,000 ppm. Using the mapper’s reflectance spectra, indirect lighting of areas in shadow confirmed water ice within 20° latitude of both poles in 2018. In 2009, LCROSS sent a 2,300 kg (5,100 lb) impactor into a permanently shadowed polar crater, and detected at least 100 kg (220 lb) of water in a plume of ejected material. Another examination of the LCROSS data showed the amount of detected water to be closer to 155 ± 12 kg (342 ± 26 lb).
In May 2011, 615–1410 ppm water in melt inclusions in lunar sample 74220 was reported, the famous high-titanium “orange glass soil” of volcanic origin collected during the Apollo 17 mission in 1972. The inclusions were formed during explosive eruptions on the Moon approximately 3.7 billion years ago. This concentration is comparable with that of magma in Earth’s upper mantle. Although of considerable selenological interest, this announcement affords little comfort to would-be lunar colonists – the sample originated many kilometers below the surface, and the inclusions are so difficult to access that it took 39 years to find them with a state-of-the-art ion microprobe instrument.
Analysis of the findings of the Moon Mineralogy Mapper (M3) revealed in August 2018 for the first time “definitive evidence” for water-ice on the lunar surface. The data revealed the distinct reflective signatures of water-ice, as opposed to dust and other reflective substances. The ice deposits were found on the North and South poles, although it is more abundant in the South, where water is trapped in permanently shadowed craters and crevices, allowing it to persist as ice on the surface since they are shielded from the sun.
Orbit.
The Moon makes a complete orbit around Earth with respect to the fixed stars about once every 27.3 days (its sidereal period). However, because Earth is moving in its orbit around the Sun at the same time, it takes slightly longer for the Moon to show the same phase to Earth, which is about 29.5 days (its synodic period). Unlike most satellites of other planets, the Moon orbits closer to the ecliptic plane than to the planet’s equatorial plane. The Moon’s orbit is subtly perturbed by the Sun and Earth in many small, complex and interacting ways. For example, the plane of the Moon’s orbit gradually rotates once every 18.61 years, which affects other aspects of lunar motion. These follow-on effects are mathematically described by Cassini’s laws.
Relative size.
The Moon is exceptionally large relative to Earth: Its diameter is more than a quarter and its mass is 1/81 of Earth’s. It is the largest moon in the Solar System relative to the size of its planet, though Charon is larger relative to the dwarf planet Pluto, at 1/9 Pluto’s mass. The Earth and the Moon’s barycentre, their common center of mass, is located 1,700 km (1,100 mi) (about a quarter of Earth’s radius) beneath Earth’s surface.
The Earth revolves around the Earth-Moon barycentre once a sidereal month, with 1/81 the speed of the Moon, or about 12.5 metres (41 ft) per second. This motion is superimposed on the much larger revolution of the Earth around the Sun at a speed of about 30 kilometres (19 mi) per second.
The surface area of the Moon is slightly less than the areas of North and South America combined.
Tidal effects.
The gravitational attraction that masses have for one another decreases inversely with the square of the distance of those masses from each other. As a result, the slightly greater attraction that the Moon has for the side of Earth closest to the Moon, as compared to the part of the Earth opposite the Moon, results in tidal forces. Tidal forces affect both the Earth’s crust and oceans.
The most obvious effect of tidal forces is to cause two bulges in the Earth’s oceans, one on the side facing the Moon and the other on the side opposite. This results in elevated sea levels called ocean tides. As the Earth spins on its axis, one of the ocean bulges (high tide) is held in place “under” the Moon, while another such tide is opposite. As a result, there are two high tides, and two low tides in about 24 hours. Since the Moon is orbiting the Earth in the same direction of the Earth’s rotation, the high tides occur about every 12 hours and 25 minutes; the 25 minutes is due to the Moon’s time to orbit the Earth. The Sun has the same tidal effect on the Earth, but its forces of attraction are only 40% that of the Moon’s; the Sun’s and Moon’s interplay is responsible for spring and neap tides.
If the Earth were a water world (one with no continents) it would produce a tide of only one meter, and that tide would be very predictable, but the ocean tides are greatly modified by other effects: the frictional coupling of water to Earth’s rotation through the ocean floors, the inertia of water’s movement, ocean basins that grow shallower near land, the sloshing of water between different ocean basins. As a result, the timing of the tides at most points on the Earth is a product of observations that are explained, incidentally, by theory.
In a like manner, the lunar surface experiences tides of around 10 cm (4 in) amplitude over 27 days, with two components: a fixed one due to Earth, because they are in synchronous rotation, and a varying component from the Sun. The Earth-induced component arises from libration, a result of the Moon’s orbital eccentricity (if the Moon’s orbit were perfectly circular, there would only be solar tides). Libration also changes the angle from which the Moon is seen, allowing a total of about 59% of its surface to be seen from Earth over time. The cumulative effects of stress built up by these tidal forces produces moonquakes. Moonquakes are much less common and weaker than are earthquakes, although moonquakes can last for up to an hour – significantly longer than terrestrial quakes – because of the absence of water to damp out the seismic vibrations. The existence of moonquakes was an unexpected discovery from seismometers placed on the Moon by Apollo astronauts from 1969 through 1972.

‘Earthrise’ a photograph of Earth and some of the Moon’s surface that was taken from lunar orbit by astronaut William Anders on December 24, 1968, during the Apollo 8 mission. Nature photographer Galen Rowell declared it “the most influential environmental photograph ever taken”.
Exploration of the Moon, by the Soviet Union.
The Cold War-inspired Space Race between the Soviet Union and the U.S. led to an acceleration of interest in exploration of the Moon. Once launchers had the necessary capabilities, these nations sent unmanned probes on both flyby and impact/lander missions. Spacecraft from the Soviet Union’s Luna program were the first to accomplish a number of goals: following three unnamed, failed missions in 1958, the first human-made object to escape Earth’s gravity and pass near the Moon was Luna 1; the first human-made object to impact the lunar surface was Luna 2, and the first photographs of the normally occluded far side of the Moon were made by Luna 3, all in 1959.
The first spacecraft to perform a successful lunar soft landing was Luna 9 and the first unmanned vehicle to orbit the Moon was Luna 10, both in 1966. Rock and soil samples were brought back to Earth by three Luna sample return missions (Luna 16 in 1970, Luna 20 in 1972, and Luna 24 in 1976), which returned 0.3 kg total.[191] Two pioneering robotic rovers landed on the Moon in 1970 and 1973 as a part of Soviet Lunokhod programme.
Luna 24 was the last Soviet/Russian mission to the Moon.

Apollo 11 crew, who made the first crewed landing: Commander Neil Armstrong, Command Module Pilot Michael Collins, and Lunar Module Pilot Buzz Aldrin.
Exploration of the Moon, by the United States.
During the late 1950s at the height of the Cold War, the United States Army conducted a classified feasibility study that proposed the construction of a manned military outpost on the Moon called Project Horizon with the potential to conduct a wide range of missions from scientific research to nuclear Earth bombardment. The study included the possibility of conducting a lunar-based nuclear test. The Air Force, which at the time was in competition with the Army for a leading role in the space program, developed its own similar plan called Lunex. However, both these proposals were ultimately passed over as the space program was largely transferred from the military to the civilian agency NASA.
Following President John F. Kennedy’s 1961 commitment to a manned moon landing before the end of the decade, the United States, under NASA leadership, launched a series of unmanned probes to develop an understanding of the lunar surface in preparation for manned missions: the Jet Propulsion Laboratory’s Ranger program produced the first close-up pictures; the Lunar Orbiter program produced maps of the entire Moon; the Surveyor program landed its first spacecraft four months after Luna 9. The manned Apollo program was developed in parallel; after a series of unmanned and manned tests of the Apollo spacecraft in Earth orbit, and spurred on by a potential Soviet lunar flight, in 1968 Apollo 8 made the first manned mission to lunar orbit. The subsequent landing of the first humans on the Moon in 1969 is seen by many as the culmination of the Space Race
Neil Armstrong became the first person to walk on the Moon as the commander of the American mission Apollo 11 by first setting foot on the Moon at 02:56 UTC on 21 July 1969. An estimated 500 million people worldwide watched the transmission by the Apollo TV camera, the largest television audience for a live broadcast at that time. The Apollo missions 11 to 17 (except Apollo 13, which aborted its planned lunar landing) removed 380.05 kilograms (837.87 lb) of lunar rock and soil in 2,196 separate samples. The American Moon landing and return was enabled by considerable technological advances in the early 1960s, in domains such as ablation chemistry, software engineering, and atmospheric re-entry technology, and by highly competent management of the enormous technical undertaking.
Scientific instrument packages were installed on the lunar surface during all the Apollo landings. Long-lived instrument stations, including heat flow probes, seismometers, and magnetometers, were installed at the Apollo 12, 14, 15, 16, and 17 landing sites. Direct transmission of data to Earth concluded in late 1977 because of budgetary considerations, but as the stations’ lunar laser ranging corner-cube retroreflector arrays are passive instruments, they are still being used. Ranging to the stations is routinely performed from Earth-based stations with an accuracy of a few centimeters, and data from this experiment are being used to place constraints on the size of the lunar core.
After the first Moon race there were years of near quietude but starting in the 1990s, many more countries have become involved in direct exploration of the Moon. In 1990, Japan became the third country to place a spacecraft into lunar orbit with its Hiten spacecraft. The spacecraft released a smaller probe, Hagoromo, in lunar orbit, but the transmitter failed, preventing further scientific use of the mission. In 1994, the U.S. sent the joint Defense Department/NASA spacecraft Clementine to lunar orbit. This mission obtained the first near-global topographic map of the Moon, and the first global multispectral images of the lunar surface.This was followed in 1998 by the Lunar Prospector mission, whose instruments indicated the presence of excess hydrogen at the lunar poles, which is likely to have been caused by the presence of water ice in the upper few meters of the regolith within permanently shadowed craters.
India, Japan, China, the United States, and the European Space Agency each sent lunar orbiters, and especially ISRO’s Chandrayaan-1 has contributed to confirming the discovery of lunar water ice in permanently shadowed craters at the poles and bound into the lunar regolith. The post-Apollo era has also seen two rover missions: the final Soviet Lunokhod mission in 1973, and China’s ongoing Chang’e 3 mission, which deployed its Yutu rover on 14 December 2013. The Moon remains, under the Outer Space Treaty, free to all nations to explore for peaceful purposes.
21st Century moon exploration.
The European spacecraft SMART-1, the second ion-propelled spacecraft, was in lunar orbit from 15 November 2004 until its lunar impact on 3 September 2006, and made the first detailed survey of chemical elements on the lunar surface.
The ambitious Chinese Lunar Exploration Program began with Chang’e 1, which successfully orbited the Moon from 5 November 2007 until its controlled lunar impact on 1 March 2009. It obtained a full image map of the Moon. Chang’e 2, beginning in October 2010, reached the Moon more quickly, mapped the Moon at a higher resolution over an eight-month period, then left lunar orbit for an extended stay at the Earth–Sun L2 Lagrangian point, before finally performing a flyby of asteroid 4179 Toutatis on 13 December 2012, and then heading off into deep space. On 14 December 2013, Chang’e 3 landed a lunar lander onto the Moon’s surface, which in turn deployed a lunar rover, named Yutu (Chinese: 玉兔; literally “Jade Rabbit”). This was the first lunar soft landing since Luna 24 in 1976, and the first lunar rover mission since Lunokhod 2 in 1973. China intends to launch another rover mission (Chang’e 4) before 2020, followed by a sample return mission (Chang’e 5) soon after.
Between 4 October 2007 and 10 June 2009, the Japan Aerospace Exploration Agency’s Kaguya (Selene) mission, a lunar orbiter fitted with a high-definition video camera, and two small radio-transmitter satellites, obtained lunar geophysics data and took the first high-definition movies from beyond Earth orbit. India’s first lunar mission, Chandrayaan-1, orbited from 8 November 2008 until loss of contact on 27 August 2009, creating a high-resolution chemical, mineralogical and photo-geological map of the lunar surface, and confirming the presence of water molecules in lunar soil. The Indian Space Research Organisation planned to launch Chandrayaan-2 in 2013, which would have included a Russian robotic lunar rover. However, the failure of Russia’s Fobos-Grunt mission has delayed this project, and was launched on 22 July 2019. The lander Vikram attempted to land on the lunar south pole regime on 6th September, but lost the signal in 2.1 km (1.3 mi). What happened after that is unknown.
The U.S. co-launched the Lunar Reconnaissance Orbiter (LRO) and the LCROSS impactor and follow-up observation orbiter on 18 June 2009; LCROSS completed its mission by making a planned and widely observed impact in the crater Cabeus on 9th October 2009, whereas LRO is currently in operation, obtaining precise lunar altimetry and high-resolution imagery. In November 2011, the LRO passed over the large and bright Aristarchus crater. NASA released photos of the crater on 25th December 2011.
Two NASA GRAIL spacecraft began orbiting the Moon around 1st January 2012, on a mission to learn more about the Moon’s internal structure. NASA’s LADEE probe, designed to study the lunar exosphere, achieved orbit on 6th October 2013.
Upcoming lunar missions include Russia’s Luna-Glob: an unmanned lander with a set of seismometers, and an orbiter based on its failed Martian Fobos-Grunt mission. Privately funded lunar exploration has been promoted by the Google Lunar X Prize, announced 13th September 2007, which offers US$20 million to anyone who can land a robotic rover on the Moon and meet other specified criteria. Shackleton Energy Company is building a program to establish operations on the south pole of the Moon to harvest water and supply their Propellant Depots.
NASA began to plan to resume manned missions following the call by U.S. President George W. Bush on 14th January 2004 for a manned mission to the Moon by 2019 and the construction of a lunar base by 2024. The Constellation program was funded and construction and testing begun on a manned spacecraft and launch vehicle, and design studies for a lunar base. However, that program has been canceled in favour of a manned asteroid landing by 2025 and a manned Mars orbit by 2035. India has also expressed its hope to send a manned mission to the Moon by 2020.[
On 28th February 2018, SpaceX, Vodafone, Nokia and Audi announced a collaboration to install a 4G wireless communication network on the Moon, with the aim of streaming live footage on the surface to Earth.
Recent reports also indicate NASA’s intent to send a woman astronaut to the Moon in their planned mid-2020s mission.
Legal status.
Although Luna landers scattered pennants of the Soviet Union on the Moon, and U.S. flags were symbolically planted at their landing sites by the Apollo astronauts, no nation claims ownership of any part of the Moon’s surface. Russia, China, and the U.S. are party to the 1967 Outer Space Treaty, which defines the Moon and all outer space as the “province of all mankind”. This treaty also restricts the use of the Moon to peaceful purposes, explicitly banning military installations and weapons of mass destruction. The 1979 Moon Agreement was created to restrict the exploitation of the Moon’s resources by any single nation, but as of November 2016, it has been signed and ratified by only 18 nations, none of which engages in self-launched human space exploration or has plans to do so. Although several individuals have made claims to the Moon in whole or in part, none of these are considered credible.

The Genesis Rock is a sample of Moon rock retrieved by Apollo 15 astronauts James Irwin and David Scott in 1971 during the second lunar EVA, at Spur crater. It is currently stored at the Lunar Sample Laboratory Facility in Houston, Texas. It is sample number 15415.
Chemical analysis of the Genesis Rock indicated it is an anorthosite, composed mostly of a type of plagioclase feldspar known as anor… See more