Posted by on Jan 31, 2018 in Main |


It was a packed church hall at the January meeting of Keighley astronomical society. The guest speaker was Dr Sue Bowler from the school of astronomy at the university of leeds. The presentation was titled ‘The promise of Gravitational-wave astronomy’.

This emerging branch of astronomy uses gravitational waves (minute distortions of spacetime predicted by Enstien’s theory of general relativity) to collect observational data about objects such as neutron stars and black holes, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.

Gravitational waves have a solid theoretical basis, founded upon the theory of relativity. They were first predicted by Einstein in 1916; although a specific consequence of general relativity, they are a common feature of all theories of gravity that obey special relativity. Indirect observational evidence for their existence first came in 1974 from measurements of the Hulse–Taylor binary pulsar, whose orbit evolves exactly as would be expected for gravitational wave emission.


Dr Sue Bowler is welcomed to the January meeting of Keighley Astronomical society

In 2015, the LIGO project was the first to directly observe gravitational waves using laser interferometers. The LIGO detectors observed gravitational waves from the merger of two stellar-mass black holes, matching predictions of general relativity. These observations demonstrated the existence of binary stellar-mass black hole systems, and were the first direct detection of gravitational waves and the first observation of a binary black hole merger. This finding has been characterized as revolutionary to science, because of the verification of our ability to use gravitational-wave astronomy to progress in our search and exploration of dark matter and the big bang.

There are several current scientific collaborations for observing gravitational waves. There is a worldwide network of ground-based detectors, these are kilometre-scale laser interferometers including: the Laser Interferometer Gravitational-Wave Observatory (LIGO), a joint project between MIT, Caltech and the scientists of the LIGO Scientific Collaboration with detectors in Livingston, Louisiana and Hanford, Washington; Virgo, at the European Gravitational Observatory, Cascina, Italy; GEO600 in Sarstedt, Germany, and the Kamioka Gravitational Wave Detector (KAGRA), operated by the University of Tokyo in the Kamioka Observatory, Japan.


Another well attended society meeting

LIGO and Virgo are currently being upgraded to their advanced configurations. Advanced LIGO began observations in 2015, detecting gravitational waves even though not having reached its design sensitivity yet; Advanced Virgo is expected to start observing in 2016. The more advanced KAGRA is scheduled for 2018. GEO600 is currently operational, but its sensitivity makes it unlikely to make an observation; its primary purpose is to trial technology.

Russell Hulse and Joseph Taylor were awarded the 1993 Nobel Prize in Physics for showing that the orbital decay of a pair of neutron stars, one of them a pulsar, fits general relativity’s predictions of gravitational radiation. Subsequently, many other binary pulsars (including one double pulsar system) have been observed, all fitting gravitational-wave predictions. In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry Barish for their role in the first detection of gravitational waves. 

Gravitational waves provide complementary information to that provided by other means. By combining observations of a single event made using different means, it is possible to gain a more complete understanding of the source’s properties. This is known as multi-messenger astronomy. Gravitational waves can also be used to observe systems that are invisible (or almost impossible to detect) to measure by any other means. For example, they provide a unique method of measuring the properties of black holes.



Gravitational waves can be emitted by many systems, but, to produce detectable signals, the source must consist of extremely massive objects moving at a significant fraction of the speed of light. The main source is a binary of two compact objects. Example systems include:

Compact binaries made up of two closely orbiting stellar-mass objects, such as white dwarfs, neutron stars or black holes. Wider binaries, which have lower orbital frequencies, are a source for detectors like LISA. Closer binaries produce a signal for ground-based detectors like LIGO. Ground-based detectors could potentially detect binaries containing an intermediate mass black hole of several hundred solar masses.

Supermassive black hole binaries, consisting of two black holes with masses of 105–109 solar masses. Supermassive black holes are found at the centre of galaxies. When galaxies merge, it is expected that their central supermassive black holes merge too. These are potentially the loudest gravitational-wave signals. The most massive binaries are a source for PTAs. Less massive binaries (about a million solar masses) are a source for space-borne detectors like LISA.

Extreme-mass-ratio systems of a stellar-mass compact object orbiting a supermassive black hole. These are sources for detectors like LISA. Systems with highly eccentric orbits produce a burst of gravitational radiation as they pass through the point of closest approach; systems with near-circular orbits, which are expected towards the end of the inspiral, emit continuously within LISA’s frequency band. Extreme-mass-ratio inspirals can be observed over many orbits. This makes them excellent probes of the background spacetime geometry, allowing for precision tests of general relativity.


Binary systems made up of two massive objects orbiting each other are an important source for gravitational-wave astronomy. The system emits gravitational radiation as it orbits, these carry away energy and momentum, causing the orbit to shrink. Shown here is a binary white dwarf system, an important source for space-borne detectors like LISA. The eventual merger of the white dwarfs may result in a supernova, represented by the explosion in the third panel.

In addition to binaries, there are other potential sources:
Supernovae generate high-frequency bursts of gravitational waves that could be detected with LIGO or Virgo.

Rotating neutron stars are a source of continuous high-frequency waves if they possess axial asymmetry. 
Early universe processes, such as inflation or a phase transition.

Cosmic strings could also emit gravitational radiation if they do exist. Discovery of these gravitational waves would confirm the existence of cosmic strings.
Gravitational waves interact only weakly with matter. This is what makes them difficult to detect. It also means that they can travel freely through the Universe, and are not absorbed or scattered like electromagnetic radiation. It is therefore possible to see to the centre of dense systems, like the cores of supernovae or the Galactic Centre. It is also possible to see further back in time than with electromagnetic radiation, as the early universe was opaque to light prior to recombination, but transparent to gravitational waves.


Noise curves for a selection of gravitational-wave detectors as a function of frequency. At very low frequencies are pulsar timing arrays, the European Pulsar Timing Array (EPTA) and the future International Pulsar Timing Array (IPTA); at low frequencies are space-borne detectors, the formerly proposed Laser Interferometer Space Antenna (LISA) and the currently proposed evolved Laser Interferometer Space Antenna (eLISA), and at high frequencies are ground-based detectors, the initial Laser Interferometer Gravitational-Wave Observatory (LIGO) and its advanced configuration (aLIGO). The characteristic strain of potential astrophysical sources are also shown. To be detectable the characteristic strain of a signal must be above the noise curve.

The ability of gravitational waves to move freely through matter also means that gravitational-wave detectors, unlike telescopes, are not pointed to observe a single field of view but observe the entire sky. Detectors are more sensitive in some directions than others, which is one reason why it is beneficial to have a network of detectors.

Cosmic inflation, a hypothesized period when the universe rapidly expanded during the first 10−36 seconds after the Big Bang, would have given rise to gravitational waves; that would have left a characteristic imprint in the polarization of the CMB radiation.


The LIGO Hanford Control Room


It is possible to calculate the properties of the primordial gravitational waves from measurements of the patterns in the microwave radiation, and use those calculations to learn about the early universe.

As a young area of research, gravitational-wave astronomy is still in development; however, there is consensus within the astrophysics community that this field will evolve to become an established component of 21st century multi-messenger astronomy.